

www.iaset.us editor@iaset.us

CONTENT EXTRACTION USING DOCUMENT OBJECT MODEL AND NATURAL

LANGUAGE PROCESSING FOR WEB

AAKRITI AGARWAL, SHAILEY CHHEDA, KRIMA SHAH & MEERA NARVEKAR

Department of Computer Engineering, Mumbai University, DJSCOE, Mumbai, Maharashtra, India

ABSTRACT

Web pages often contain clutter such as pop-up advertisements, unnecessary images and extraneous links around

the body of an article that distract a user from actual content and may reduce effects of many advanced web applications.

Often this noisy content is combined with the main content leaving no clean boundaries between them. This noisy content

as a result makes the problem of information harvesting from web pages much harder. Most approaches to removing

clutter or making content more readable involve changing font size or removing HTML which takes away from a webpage

its inherent look. Unlike 'Content Reformatting', which aims to recreate the webpage in a more convenient form, our

solution directly addresses 'Content Extraction', an approach that does not require previous knowledge of website

templates. For higher accuracy in content extraction, the analyzing software needs to act as a human user and understand

content in natural language along with HTML DOM analysis in order to eliminate noisy content. In this paper,

a combination of HTML DOM analysis and Natural Language Processing (NLP) techniques for automated extractions of

main article of interest with associated images from web pages has been described.

KEYWORDS: Content Extraction, DOM, NLP

INTRODUCTION

Considering that a huge amount of world's information resides in web pages, it is becoming very important to

analyze and mine information from web pages. HTML format is designed more for human users to view and does not

easily lend itself to automated processing for information extraction. A seemingly simple visual block containing a few

paragraphs of text is typically coded using tens of HTML nodes some of which contain the text and others contain styling

information to control layout. This problem is compounded by the fact that typical web pages contain significant amount of

unrelated content interspersed with the main content. The noisy content is mostly in the form of navigation bars on top

and/or on the side, horizontal or vertical banner advertisements, boxes with links to unrelated content, boxes containing

images or animated advertisements, etc. Such noisy content adversely affects performance of web content analysis and

information extraction technologies.

Thus, it is essential to extract the main article content including all the text with original styling information along

with any associated images or figures with their captions while eliminating other images which are advertisements and

other unrelated text blocks. Content Extraction can be used to remove clutter without destroying webpage layout, making

more of a page’s content that can be viewed at once.

Content extraction is particularly useful for the visually impaired and blind. A common practice for improving

web page accessibility for the visually impaired is to increase font size and decrease screen resolution; but, this also

increases the size of the clutter, and thus reducing effectiveness. Screen readers for the blind, like 'Hal Screen Reader' by

International Journal of Computer Science

and Engineering (IJCSE)

ISSN(P): 2278-9960; ISSN(E): 2278-9979

Vol. 3, Issue 2, Mar 2014, 27-34

© IASET

28 Aakriti Agarwal, Shailey Chheda, Krima Shah & Meera Narvekar

www.iaset.us editor@iaset.us

Dolphin Computer Access or Microsoft’s Narrator, don’t usually automatically remove such clutter either and often read

out full raw HTML. Thus, both groups benefit from extraction as less material must be read to obtain the desired results.

A generic solution employs a series of techniques that address the aforementioned problems. In order to analyze a

web page for content extraction, we pass web pages through an HTML parser that corrects the markup and creates a

Document Object Model tree. The Document Object Model is a standard for creating and manipulating in-memory

representations of HTML (and XML) content. Increasing support for the Document Object Model makes the solution

widely portable.

Natural Language Processing (NLP) and information retrieval (IR) algorithms can also benefit from content

extraction, as they depend on the relevance of content and the reduction of standard word error rate to produce accurate

results. Content extraction allows the algorithms to process only the extracted content as input as opposed to cluttered data

coming directly from the web. Currently, most NLP-based information retrieval applications require writing specialized

extractors for each web domain. While generalized content extraction is less accurate than hand-tailored extractors, they

are often sufficient and reduce labor involved in adopting information retrieval systems.

In this paper, we first describe related work and applications. Then we give a detailed problem statement and

finally we describe various approaches to solve the problem.

RELATED WORK

The term Content Extraction (CE) was introduced by Rahman et al.
[1]

 in 2001. In the last decade, extraction of

content from web pages has been studied intensively and numerous methods have been developed. There are sets of

content extraction approaches based on statistical information of web pages. In 2001, Finn et al.
[2]

 introduced the Body

Text Extraction (BTE) algorithm to improve the accuracy of the content’s classifier for digital libraries. They interpreted

an HTML document as a sequence of word and tag tokens, and then extracted content by identifying a single, continuous

region which contains the most words and the least HTML tags. Thus the algorithm tokenizes a page into either words or

tags; the page is then sectioned into three contiguous regions, placing boundaries to partition the document such that most

tags are placed into outside regions and word tokens into the middle region. This approach works well for single body

documents, but it reversely destroys the structure of the HTML and does not produce good results for multiple body

documents. In order for content of multiple body documents to be successfully extracted, the running time of the algorithm

would become polynomial time with a degree equal to the number of separate bodies.

To overcome the limitation of BTE in discovering only a single continuous block of text, Pinto et al.
[3]

 extended

this method to construct Document Slope Curves (DSC), in which a windowing technique is used to locate document

regions in which word tokens are more frequent than tag tokens. They used this technique to improve performance and

efficiency for answering questions with web data in their QuASM system. Mantratzis et al.
[4]

 presented an approach

named Link Quota Filter (LQF) to identify link lists and navigation elements by identifying DOM elements which have a

high ratio of text residing in hyperlink anchors. It can be applied to content extraction by removing the resulting link

blocks from the document. The major drawback of this method is that it relies on structure elements, and it can only

identify hyperlink-type noise.

McKeown et al.
[5][6]

, in the NLP group at Columbia University, detects the largest body of text on a webpage

(by counting the number of words) and classifies that as content. This approach works well with simple pages. However,

Content Extraction Using Document Object Model and Natural Language Processing for Web 29

www.iaset.us editor@iaset.us

this approach produces noisy or inaccurate results handling multi-body documents, especially with random advertisement

and image placement.

The Content Code Blurring (CCB) algorithm was introduced by Gottron
[7]

 in 2008. Content regions are detected

in homogeneously formatted source code character sequences. Weninger et al.
[8]

 introduced the Content Extraction via

Tag Ratios (CETR) algorithm, a method to extract content text from diverse web pages using the HTML document’s tag

ratios. The approach computes tag ratios on a line-by-line basis and then clusters the resulting histogram into content and

noise areas. This is a laconic and efficient algorithm, however vulnerable to the page’s source code style changes.

Buyukkokten et al.
[9][10][12]

 define “accordion summarization” as a strategy where a page can be shrunk or

expanded. They also discuss a method to transform a web page into a hierarchy of individual content units called Semantic

Textual Units (STUs). First, STUs are built by analyzing syntactic features of an HTML document, like text contained

within paragraph (<P>), table cell (<TD>), and frame component (<FRAME>) tags. These syntactic features are then

arranged into a hierarchy based on the HTML formatting of each STU. STUs that contain HTML header tags

(<H1>, <H2>, and <H3>) or bold text () are given a higher level in the hierarchy than plain text. The hierarchical

structure is finally displayed on PDAs and cellular phones. While Buyukkokten’s hierarchy is similar to our DOM

tree-based model, DOM trees remain highly editable and can easily be reconstructed back into a complete web site. DOM

trees are also a widely-adopted W3C standard, easing support and integration of our technology. The main problem with

the STUs approach is that once the STU has been identified, Buyukkokten et al. perform summarization on the STUs to

produce the content that is then displayed on PDAs and cell phones.

Kaasinen et al.
[11]

, discusses methods to divide a web page into individual units similar to cards in a deck.

Like STUs, a web page is divided into a series of hierarchical “cards” that are placed into a “deck”. This deck of cards is

presented to the user one card at a time for easy browsing. It also suggests a simple conversion of HTML content to WML

(Wireless Markup Language),which results in the removal of simple information such as images and bitmaps from the web

page so that scrolling is minimized for small displays. The problem with the deck-of-cards model is that it relies on splitting

a site into tiny sections that can then be browsed as windows(cards). But this means that it is up to the user to determine on

which cards the actual contents are located.

PROPOSED METHOD

A solution employs multiple extensible techniques that incorporate the merits and overcomes the demerits of the

previous work on content extraction. To analyze a web page for content extraction, the web page is first passed through an

HTML parser that corrects the HTML and creates a Document Object Model tree representation of the web page.

The Document Object Model tree is hierarchically arranged and can be analyzed in sections or entirely, providing a wide

range of flexibility for the extraction algorithm. The content extractor navigates the Document Object Model tree

recursively, using a series of various filtering techniques to remove and modify specific nodes and extract only the content.

Each of these filters can be easily turned on and off and customized to a certain degree.

There are two sets of filters, with different levels of granularity. The first set of filters simply ignores tags or

specific attributes within tags. With these filters, links, scripts, styles, and many other elements can be quickly removed

from the web page. This procedure of filtering is similar to conversion of HTML to WML. However, the second of type

filters is more complex and algorithmic, providing a higher level of extraction than offered by the conversion of HTML to

30 Aakriti Agarwal, Shailey Chheda, Krima Shah & Meera Narvekar

www.iaset.us editor@iaset.us

WML. This set, which can be extended, consists of the advertisements remover, the link list remover, the empty table

remover, and the removed links retainer.

The advertisement remover uses an efficient technique to remove advertisements. As the Document Object Model

(DOM) tree is parsed, the values of the “src” and “href” attributes throughout the page are surveyed to determine the

servers to which the links refer. If a link address matches against a list of common advertisement servers, the node of the

Document Object Model (DOM) tree that contained the link is removed.

The link list remover employs a filtering technique that removes all “link lists”, which are table cells for which the

ratio of the number of links to the number of non-linked words is greater than a specific threshold (known as the link/text

removal ratio). When the Document Object Model (DOM) parser encounters a table cell, the Link List Remover calculates

the number of links and the number of non-linked words. The number of non-linked words is determined by taking the

number of letters not contained in a link and dividing it by the average number of characters per word, which can be preset

as say 5 (although it may be overridden by the user). If the ratio is greater than the user-determined link/text removal ratio,

the content of the table cell (and, optionally, the cell itself) is removed. This algorithm succeeds in removing long link lists

that tend to reside along the sides of web pages while leaving the text-intensive portions of the page intact.

The empty table remover removes tables that are empty of any “substantive” information. The user determines by

making settings, which HTML tags should be considered to be substance and how many characters within a table are

needed to be viewed as substantive. The table remover checks a table for substance after it has been parsed through the

filter. If a table has no substance, it is removed from the tree. This algorithm effectively removes any tables leftover from

previous filters that contain small amounts of unimportant information.

After examining many web article pages, we have found that there are basically three ways in which paragraphs

are created in HTML examples: (1) <div> text, (2) <p> text, and (3) text
 text. Note that both <div> and <p> are block

tags where each of these nodes forms a paragraph block on the rendered web page. The third type, text
 text, on the

contrary uses the
 (line-break) tag to separate the text into paragraph blocks. In a typical article, there are usually more

than one article subtrees that are candidates as the main article text-body. To determine which article subtree is the main

article, we use the following rule-based algorithm. First, find all the article subtrees having large body of text by summing

up all the text size (number of characters) in the paragraphs, and then use a threshold to only keep the subtrees with large

text-sizes. A good threshold value is 500, which means that the minimum article should contain at least 500 characters.

Each article subtree, visually, is a content block on the rendered web page. The article subtree or content block might

contain other content type beside paragraphs such as images and hyperlinks to other web sites. If the first step produces

multiple article subtrees, then we choose the one that is first occurring on the DOM, which visually should be the

upper-most on the web page. Note that this article subtree might not have the largest text-size. The assumption is that the

main article text block should always be on top of the page relative to other large text blocks.

Since we are using the image caption for the semantic similarity test, the image and its caption need to be

identified and extracted. On the Document Object Model (DOM), it is easy to identify images, by simply using the HTML

tag semantic, e.g. we look for the tag elements. We assume that if there is an article image, it will be embedded in

the article block, equivalent to having the image node in the article subtree. We further assume that if an image has no

caption, it is a non-article image. Thus we only consider images with captions in the article subtree as candidates for

similarity testing. By examining the DOM of many web pages, we found that the smallest bounding block that contains

Content Extraction Using Document Object Model and Natural Language Processing for Web 31

www.iaset.us editor@iaset.us

both the image and its caption is also their first parent block-element. From this observation, the following heuristic rules

are used to extract image caption: For each image in the article subtree, and the first parent block-element. All the text

content in this parent element is considered to be caption text, which can now be used to conduct the similarity test with

the article text-body.

Figure 1: Filtering Settings Interface

Figure 2: Output Settings Interface

Figure 3: System Diagram

32 Aakriti Agarwal, Shailey Chheda, Krima Shah & Meera Narvekar

www.iaset.us editor@iaset.us

Text extracted from various text blocks as well as image captions are compared for semantic similarity in this

step. The content similarity algorithm relies on NLP techniques for information extraction. The algorithm first performs

Named Entity Recognition where names of people, places and organizations (commercial, governmental or NGOs) are

extracted. To perform Named Entity Recognition leveraged GATE can be used. After the Named Entity Recognition is

completed, the algorithm compares the extracted patterns of named entities in any two given content blocks to determine

content similarity. For smaller content blocks that do not have high frequencies of named entities, it performs match of

representative named entities that occur with high frequencies in the bigger content block. For large content blocks our

algorithm calculates frequencies of each recognized entity in both content blocks. Then it normalizes frequency

distributions and maps normalized frequencies into a multidimensional space with number of entities representing the

number of dimensions. From that it derives a cosine similarity based on the two normalized frequency distributions from

two text blocks. This represents the angle between two frequency distribution vectors. Orthogonal vectors would have

cosine similarity measure 0 which represents no similarity. Perfect similarity would be indicated by vectors in the same

direction, where cosine similarity measure would be 1.

Cosine Similarity Measure = Va.Vb /(|Va|.|Vb|) where, Va and Vb are vectors representing normalized frequency

distributions for the recognized named entities and Va and Vb represent magnitudes of the vectors. It should be noted that

since this approach relies on semantic similarity it will work even if any advertising images were placed in middle of the

article.

While the above filters remove non-content from the site, the removed link retainer adds link information back at

the end of the document to keep the page browse able. The removed link retainer keeps track of all the text links that are

removed throughout the filtering process. After the Document Object Model (DOM) tree is completely browsed, the list of

removed links is added to the bottom of the page. In this way, any important links that were previously removed remain

accessible to the user.

After the entire DOM tree is parsed and modified appropriately, it can be output in either HTML or as plain text.

The plain text output removes all the tags and retains only the text of the site, while eliminating most white spaces.

The result is a text document that contains the main content of the site in a format suitable to be summarized, or for speech

rendering or storage. Our algorithm not only finds the content, but also eliminates non-content. In this manner, we can still

process and return results for sites that don’t have an explicit “main body”.

FUTURE SCOPE

The current implementation in Java uses a 3rd-party HTML parser to create DOM trees from web pages.

Unfortunately, most of the publicly-available Java HTML parsers are either missing support for important features, such as

XHTML or dynamically-generated pages (ASP, JSP). To resolve this, we intend to support commercial parsers, such as

Microsoft’s HTML parser (which is used in Internet Explorer), in the next revision. These are much more robust and

support a wider variety of content. The integration will be accomplished by porting the existing proxy to C#/.NET, which

would allow for easy integration with COM components (of which the MS HTML parser is one).

We can also work on improving the proxy’s performance; in particular, we aim to improve both latency and

scalability of the current version. The latency of the system will be reduced by adopting a commercial parser and by

improving our algorithms to process DOM incrementally as the page is being loaded. Scalability will be addressed by

Content Extraction Using Document Object Model and Natural Language Processing for Web 33

www.iaset.us editor@iaset.us

re-architecting the proxy’s concurrency model to avoid the current thread-per-client model, adopting a stage-driven

architecture instead.

As for future work, evaluation of this system on a large set of web pages would be targeted. In addition,

optimizing content extraction and similarity measure using statistical techniques is amongst the main goals.

CONCLUSIONS

In this paper, a novel approach of content extraction has been described using NLP with HTML DOM to

differentiate relevant images from advertisements images in web article pages and to extract relevant content. Working

with the Document Object Model tree as opposed to raw HTML markup, helps to perform Content Extraction, identifying

and preserving the original data instead of summarizing it. It is observed that most images in article web pages have textual

cues such as caption around the images for which semantic comparison can be performed with the main text body to

determine image relevance. The text body and caption extraction schemes are based on DOM analysis, and their accuracy

is very high.

REFERENCES

1. F. R. Rahman, H. Alam, and R. Hartono. Content extraction from html documents. In WDA2001, pages 7–10,

2001.

2. Aidan Finn, Nicholas Kushmerick, and Barry Smyth. “Fact or fiction: Content classification for digital libraries”.

Smart Media Institute, Department of Computer Science, University College Dublin. August 11, 2002.

<http://www.smi.ucd.ie/hyppia/publications/DELOS_workshopAF/DCUconf.html>.

3. D. Pinto, M. Branstein, R. Coleman, W. B. Croft, M. King, W. Li, and X. Wei. Quasm: A system for question

answering using semi-structured data. In Proceedings of JCDL ’02, pages 46–55, 2002.

4. Mantratzis, M. Orgun, and S. Cassidy. Separating xhtml content from navigation clutter using dom-structure

block analysis. In Proceedings of HYPERTEXT ’05, pages 145–147, 2005.

5. K.R. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, M.Y. Kan, B. Schiffman, S. Teufel. “Columbia

Multi-document Summarization: Approach and Evaluation”.

6. N. Wacholder, D. Evans, J. Klavans “Automatic Identification and Organization of Index Terms for Interactive

Browsing”.

7. T. Gottron. Content code blurring: A new approach to content extraction. In Proceedings of DEXA ’08,

pages 29–33, 2008.

8. T. Weninger, W. H. Hsu, and J. Han. Cetr – content extraction via tag ratios. In Proceedings of WWW ’10,

pages 971–980, New York, NY, USA, 2010.

9. O. Buyukkokten, H. Garcia-Molina, and A. Paepcke. “Accordion Summarization for End-Game Browsing on

PDAs and Cellular Phones”. In Proc. of the Conf. on Human Factors in Computing Systems. CHI'01, 2001.

10. O. Buyukkokten, H, Garcia-Molina, A. Paepcke. “Seeing the Whole in Parts: Text Summarization for Web

Browsing on Handheld Devices”. Proc. 10th Int. World-Wide Web Conf., 2001.

34 Aakriti Agarwal, Shailey Chheda, Krima Shah & Meera Narvekar

www.iaset.us editor@iaset.us

11. E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski and T. Laakko. “Two Approaches to Bringing Internet Services

to WAP devices”. In Proc. of 9th Int. World-Wide Web Conf. 2000. pp. 231-246.

12. O. Buyukkokten, H. Garcia-Molina, A, Paepcke, “Text Summarization for Web Browsing on Handheld Devices”,

In Proc. of 10th Int. World-Wide Web Conf., 2001

